Global assembling of Academicians, Researchers, Scholars & Industry to disseminate and exchange information at 100+ Allied Academics Conferences

Theme
Advanced and Recent developments in the area of Magnetism and Magnetic Materials
- Magnetic Materials 2019

Welcome Message








With the magnificent success of Magnetic Materials 2018, Allied Academies is proud to announce the 3rd International conference on Magnetism and Magnetic Materials, to be held during October 16-17, 2019 at Barcelona, Spain. On this auspicious occasion, Organizing Committee invites the participants from all over the globe to take part in this annual flagship conference with the theme “Advanced and Recent developments in the area of Magnetism and Magnetic Materials”. Magnetic Materials 2019 aims in proclaim knowledge and share new ideas amongst the professionals, industrialists, and students from research areas of Materials Science, Magnetism, Chemistry and Physics to share their research experiences and indulge in interactive discussions and technical sessions at the event. The Conference will also have a space for companies and institutions to present their services, products, innovations and research results.

 This conference provides a perfect symposium for scientists, engineers, directors of companies and students in the field of Materials Engineering, Magnetism and related fields to meet and share their knowledge. We will be happy to bring together experts from different countries and exchange their views, reinforce knowledge base, and learn new concepts. With the participation of outstanding international experts prompt keynote presentations, Oral talks, Poster presentations and Exhibitions. We sincerely invite you to join us and your presence will certainly add value to the conference and very much appreciated!

About

Magnetic Materials 2019 Conferences conducts Novel conferences, Symposia and Workshops, concerning current international interest. Magnetic Materials 2019 Conferences want to serve the global information community in the development and distribution of high quality, scholarly conferences. It aim to support Global research communities, by empowering clusters of scientists to regularly meet and discuss topics with frontrunners in the field. These conferences cover diverse top ranked specialties and budding aspects of important and relatively broad subject areas. Organize conferences for knowledge sharing and providing global platform to explore and learn new researches in their respective fields.

 Why to attend??

 This conference Magnetic Materials 2019 will focus on different types of Magnetism and Magnetic Materials topics like Electromagnetism, Hard and Soft Magnetic Materials, Magnetic Data Storage, Spintronic Effects and Devices, Superconductivity and Superfluidity, Magnetic Materials 2019 invites you for plenary talks, symposium , workshops, invited sessions and oral and poster sessions from various universities and associations. This will be the best opportunity to outreach the large gathering of participants from all around the world and get name recognition at this two-day event. World-eminent speakers, most recent researches, latest techniques and the advanced technologies in crystallography using novel materials are the principal features of this conference.

 Target Audience:

 Our Organization would be privileged to welcome the:

 Eminent Scientists from Materials Science

Magnetism Research Professors

Junior or Senior research fellows from Universities

Materials Science Engineering Students

Directors of companies

Materials Science Engineers and Ph.D. scholars

Members of different Materials science departments

Magnetism associations

Material science associations and many more….

Sessions/Tracks

Welcome to the 3rd  International Conference on Magnetism and Magnetic Materials. The Conference will be Barcelona, Spain held, during October 16-17, 2019. The Conference will encompass all aspects of magnetism from fundamental physics and new materials to applied magnetics and device technologies. The Magnetism and Magnetic Materials Conference brings together members of the international scientific and engineering communities interested in recent developments on all aspects of fundamental and applied magnetism. Topics range from fundamental magnetism to advances in magnetic recording, emerging applications in energy and power technologies, and biomagnetism. This Conference provides an outstanding opportunity for worldwide participants to meet their colleagues and collaborators and discuss developments in all areas of magnetism research.

Magnetism and Magnetic Materials

The origin of magnetism lies in the orbital and spin motions of electrons and how the electrons interact with one another. The magnetic behavior of materials can be categorized into the following five major groups:

Diamagnetism is an essential property of all matter, though it is usually very weak. It is due to the non-cooperative conduct of orbiting electrons when exposed to an applied magnetic field. Diamagnetic substances are composed of atoms which have no remaining magnetic moments (ie., all the orbital shells are filled and there are no unpaired electrons). But, when exposed to a field, a negative magnetization is formed and therefore the susceptibility is negative.

Paramagnetism materials, some of the irons or atoms in the material have a net magnetic moment due to unpaired electrons in incompletely filled orbitals. One of the significant atoms with unpaired electrons is iron. However, distinct magnetic moments do not interrelate magnetically, and like diamagnetism, the magnetization is zero when field is detached. In the existence of a field, there is now a partial configuration of the atomic magnetic moments in the direction of the field, resultant in a net positive magnetization and positive susceptibility.

Ferromagnetism is the simple mechanism by which some materials form permanent magnets, are attracted to magnets. In physics, distinct types of magnetism are distinguished. Ferromagnetism is the strongest type it is the only one that naturally creates forces strong enough to be felt, and in charge of the common phenomena of magnetism in magnets that happens in everyday life. In ionic compounds, such as oxides, additional complex forms of magnetic ordering can happen as an outcome of the crystal arrangement. One kind of magnetic ordering is called ferrimagnetism. Materials which are not attracted to the magnet are called non-magnetic materials 

Materials that display antiferromagnetism, the magnetic moments of atoms, commonly related to the spins of electrons, align in a systematic pattern with neighboring spins directing in opposite directions. This is, like ferromagnetism and ferrimagnetism, an appearance of ordered magnetism. Normally, the antiferromagnetic order may exist at appropriately low temperatures, disappearing at and above a certain temperature, the Neel temperature  Above the Neel temperature, the material is naturally paramagnetic.

Electromagnetism

A permanent magnet has a magnetic field. A magnetic field consists of flux lines that produce from the north pole to the south pole and back to the north pole through the magnetic material. Unlike magnetic poles have an attractive force between them but, two like poles repel each other. Once nonmagnetic materials such as paper, glass, wood or plastic are placed in a magnetic field, the lines of force are unchanged. When a magnetic material such as iron is placed in a magnetic field, the flux lines tend to be transformed to pass over the magnetic material. Electricity and magnetism are real consequences of the similar thing. Electromagnetism is a division of physics which contains the study of the electromagnetic force, a type of physical interaction that happens between electrically charged particles. The electromagnetic force usually shows electromagnetic fields, such as magnetic fields, electric fields, and light. The electromagnetic force is one of the four fundamental interactions. The additional three fundamental interactions are the strong interaction, the weak interaction, and gravitation.

Hard and Soft Magnetic Materials

Hard magnetic materials

Hard magnetic materials, strongly repel demagnetization when magnetized They are used, in loudspeakers ,motors, holding devices, and meters, and have cervicitis Hc from some hundred to many thousands of oersteds The majority of permanent magnets are of the ceramic type, followed by the Alnicos and the iron-neodymium, cobalt-samarium, iron-chromium-cobalt, and elongated single-domain types in decreasing order of usage. The complete quality of a permanent magnet is characterized by the highest-energy product (BH)m but dependent on the design concerns, high Hc, high residual induction Br and reversibility of permeability may also be regulatory factors.

To know the relation between the resistance to demagnetization, that is, the metallurgical microstructure,  and coercivity, it is essential to understand the mechanisms of magnetization reversal. The two main mechanisms are reversal against a shape anisotropy and reversal through nucleation and progress of reverse magnetic domains across crystal anisotropy. The Alnicos, the iron-chromium-cobalt alloys, and the ESD Lodex alloys are instances of materials of the shape anisotropy structure, whereas the cobalt-samarium alloys, the iron-neodymium-boron, and barium ferrites alloys are examples of the crystal anisotropy-controlled materials.

Soft Magnetic Materials

Soft magnetic materials are those materials that are simply magnetized and demagnetized. The categories of applications for soft magnetic materials fall into two main categories AC and DC. In DC applications the material is magnetized in order to execute an operation and then demagnetized at the end of the operation, e.g. an electromagnet on a crane at a scrap yard will be swapped on to attract the scrap steel and then switched off to drop the steel. In AC applications the material will be endlessly cycled from being magnetized in a solitary direction to the other, through the period of operation, e.g. a power supply transformer. A high penetrability will be desirable for each form of application but the importance of the other properties varies.

Soft magnetic materials are used for electromagnetic pole-pieces, to increase the fields produced by the magnet. Solenoid switches also depend on soft magnetic materials to activate the switches. Mostly permanent magnet devices will use soft magnetic materials to channel fluidity lines or provide a return path for magnetic fields, e.g. MRI body scanners have huge permanent magnets with a load of soft magnetic material to prevent self-demagnetizing fields that would decrease the field in the gap of the scanner.

Spintronics Effect and Devices

The combination of magnetic materials and impurities into Nanoelectronic devices allows the use of the electron spin, as well as its charge, for transport information.  This new prototype in information processing devices has been called “spintronics” in electronics. Functional spintronic devices include development of new materials and integration of varied materials with atomic-level control. Magnetic tunnel junctions (MTJs) are perfect spintronic devices. They contain three layers, a ferromagnetic metal, an insulator, and another ferromagnetic metal. The insulator is only a limited nanometers thick, which is thin sufficient to allow tunneling of electrons from one metallic electrode to the another. When the magnetizations of the ferromagnetic layers are allied, the tunneling current is huge and the device resistance is little. When the magnetizations of the ferromagnetic layers are anti-aligned, the tunneling current is slight and the device resistance is huge.  If the magnetization of a single electrode is fixed, for example by exchange coupling to a neighboring antiferromagnetic and the other layer can switch dependent on a practical magnetic field, the MTJ display magnetoresistance, in which the resistance state of the device depends on the sign of the applied field.  MTJs are used as sensors in the read heads of magnetic hard disk drives.

Materials Science and Engineering

Materials Science is a commended scientific expanding, discipline in recent decades to surround, ceramics, glass, polymers, biomaterials and composite materials. It involves the discovery and design of novel materials.  Many of the most pressing scientific problems humans presently face are due to the boundaries of the materials that are available and, as a product; major advances in materials science are likely to affect the upcoming of technology considerably.

Nanomaterials and Nanotechnology

Imagine a world where unique phenomena at the molecular scale can lead to entirely new, innovative, and transformative product designs all done by utilizing properties of materials at the Nanoscale level. Nanoscale materials are not new to nature or in science. What is new is the ability to engineer nanomaterial, specifically designed with controlled sizes, shapes, and compositions, in addition to driving down costs through the adaptation of new and improved manufacturing technology. Carbon Nanomaterials are an enabler for technology with seemingly endless potential applications: detecting cancer before it spreads, self-repairing buildings and bridges, filtering water, and powering mobile devices from body heat or movement.  Carbon nanotubes are incredibly small and incredibly strong, 100 times stronger than steel at one-sixth of the density and 10,000 times smaller than one human hair. Graphene is a carbon membrane that, at just one atom thick, is stronger than steel and can tolerate wide temperature and pH ranges.

Superconductivity and Superfluidity

Superconductivity is the property of matter when it displays zero resistance to the flow of electric current. Superfluidity is the property of liquid where it acts as a free or zero tension liquid. Together with this phenomenon are reached actual low temperatures and have a challenge in achieving this period. Also succeeding these phenomenon at high temperature is a challenge to researchers and a bit of work is going on for this. In spite of this, superconductors are having a wide range of presentations in modern-day laboratories and new infrastructures.

Functional Magnetic Materials

The molecule-based magnet is a type of magnetic material.In molecule-based magnets, the physical building blocks are molecular in nature. These building blocks are either organic molecules, coordination compounds or a combination of both. In this case, the unpaired electrons may exist in d or f orbitals on isolated metal atoms, but may also exist in localized p and s orbitals as well as the purely organic classes. Like conventional magnets, they may be categorized as hard or soft, dependent on the magnitude of the coercive field. An additional distinguishing feature is that molecule-based magnets are arranged via low-temperature solution-based techniques, versus high-temperature metallurgical processing or electroplating.  This permits a chemical tailoring of the molecular building blocks to alter the magnetic properties.

Magnetization Dynamics

Atomic-level dynamics includes interactions between magnetization Dynamics, electrons, and phonons. These connections are transmissions of energy generally named relaxation. Magnetization damping can occur through energy transfer (relaxation) from an electron's spin to

Itinerant electrons (electron-spin relaxation)

Lattice vibrations (spin-phonon relaxation)

Spin waves, magnons (spin-spin relaxation)

Impurities (spin-electron, spin-phonon, or spin-spin)

Spin waves are circulating disturbances in the ordering of magnetic materials. These low-lying collective excitations happen in magnetic frames with continuous symmetry. From the corresponding quasiparticle point of view, spin waves are recognized as magnons, which are boson modes of the spin-lattice that agree roughly to the phonon excitations of the nuclear lattice. As the temperature is greater than before, the thermal excitation of spin waves decreases a ferromagnet's spontaneous magnetization. The dynamism of spin waves are naturally only UeV in keeping with typical Curie points at room temperature.

Geomagnetism

Geomagnetism is the study of the Earth's magnetic field, which is produced in the internal core. The Earth's attractive field is prevalently a geo-hub dipole, with north and south magnetic poles situated close to the geographic poles that undergo periodic reversals and excursions. Gradiometers measure magnetic field gradient rather than total field strength. Magnetic gradient irregularities generally give a superior meaning of shallow covered elements, for example, covered tanks and drums, however, are less helpful for geological tasks. The profundity penetration of magnetic studies is unaffected by high electrical ground conductivities, which makes them valuable on sites with saline groundwater, earth or abnormal amounts of defilement where the GPR and Electromagnetic methods struggle.

Magneto-Optics

Magneto-optics is a kind of magnetic materials. At the point when the light is transferred through a layer of magneto-optic material, the result is known as the Faraday effect the plane of polarization can be rotated, forming a Faraday rotator. The results of reflection from a magneto-optic material are recognized as the magneto-optic Kerr effect. Molecule-based magnets is a sort of magnetic material.

 

Past Conference Report

Thanks for attending Magnetic Materials 2018!!



 2nd International Conference on Magnetism and Magnetic Materials has been successfully completed - The 2nd edition – and we must Thank the attendees, Mercure Budapest Buda- Krisztina körút  & Conference Centre Staff, and the Organizing Committee, Ad-Sponsors & Media partners and everyone else that helped to make this 2nd International Conference on Magnetism and Magnetic Materials with the theme: Addressing New Challenges and Emerging Issues in Magnetic Materials a successful conference.


To Attendees,

 

We hope that you obtained the kind of advance technical information in the arena of Material Science and Engineering that you were seeking, and that your role in the field has been enhanced via your participation. We hope that you were able to take part in all the sessions and take advantage of the tremendous advancements in Magnetism, Materials Science and Engineering that scientists are working with.



If you have any feedback for us for future consideration or enhancements of this Conference, please provide your feedback to Conference Manager.

Avya Casa at magneticmaterials@alliedscholars.com



The meeting covered various sessions, in which the discussions included the scientific tracks:



Magnetism and Magnetic Materials

Electromagnetism

Hard and Soft Magnetic Materials

Spintronics Effects and Devices

Materials Science and Engineering

Superconductivity and Superfluidity

Functional Magnetic Materials

Magnetization Dynamics

Geomagnetism

Nano Materials and Nanotechnology

Magneto-Optics 



The Keynote presentations were given by:


Georgios K. Kertsopoulos| Independent Private Inventor| Greece

Shailender Gaur| P.W.D. B&R, Br. Hisar| Government of Haryana| India

Wolfgang Kleemann| University Duisburg-Essen| Germany

Sandeep Kumar Srivastava| Central Institute of Technology| India



We offers its heartfelt appreciation to organizations and other eminent personalities who supported the conference by promoting in various modes online and offline which helped the conference reach every nook and corner of the globe. We also took privilege to felicitate the Keynote Speakers, Organizing Committee Members, Chairs and sponsors who supported this event


With the grand success of Magnetic Materials 2018, we are proud to announce the "3rd International conference on Magnetism and Magnetic Materials " to be held during October 16-17, 2018, Barcelona, Spain.


Bookmark your dates: We hope to see you at Magnetic Materials 2019, at Barcelona, Spain during October 11-12, 2019

Organizing Committee
OCM Member
Georgios K. Kertsopoulos
Independent Private Inventor
Athens, Greece
OCM Member
Alexander S. Kamzin
Ioffe Physical Technical Institute
Moscow , Russia
OCM Member
Mrinal Pal
Principal Scientist
CSIR-Central Glass and Ceramic Research Institute, Kolkata.
Kolkata, India
OCM Member
Claudia Masselli
University of Salerno
Salerno, Italy
OCM Member
Nikolay V. Kudrevatykh
Ural Federal University
Moscow, Russia
OCM Member
Robert C Pullar
University of Aveiro
Azores, Portugal
OCM Member
Osman Adiguzel
Professor, Department of Physics
Firat University
Nigde, Turkey
OCM Member
Leonid Lutsev
Ioffe Institute
Moscow , Russia
OCM Member
Nadezhda A. Skulkina
Ural Federal University
Moscow, Russia

To Collaborate Scientific Professionals around the World

Conference Date October 16-17, 2019
Speaker Oppurtunity Day 1 Day 2
Poster Oppurtunity Available
e-Poster Oppurtunity Available
Sponsorship Opportunities Click here for Sponsorship Opportunities
Venue
&
Hospitality


Join The Discussion

Allied Academies Global Conference Directory

Mail us at

General Enquires
magneticmaterials@alliedscholars.com
Sponsor | Exhibit | Advertise
magneticmaterials@alliedscholars.net
Program enquiry
magneticmaterials@alliedconferences.net
More details about sponsorship:sponsors@alliedacademies.com

Terms and Conditions

Responsibility

Delegates are personally responsible for their belongings at the venue. The Organizers will not be held responsible for any stolen or missing items belonging to Delegates, Speakers or Attendees; due to any reason whatsoever.

Insurance

Registration fees do not include insurance of any kind.

Transportation

Please note that any (or) all transportation and parking is the responsibility of the registrant.

Press/Media

Press permission must be obtained from Allied Academies Organizing Committee prior to the event. The press will not quote speakers or delegates unless they have obtained their approval in writing. The Allied academies are a non-profit organization. This conference is not associated with any commercial meeting company.
Requesting an Invitation Letter

For security purposes, letter of invitation will be sent only to those individuals who had registered for the conference. Once your registration is complete, please contact magneticmaterials@alliedmeetings.org to request a personalized letter of invitation.

Regarding refunds, all bank charges will be for the registrant's account.
Cancellation, Postponement and Transfer of Registration
All cancellations or modifications of registration must be made in writing to Program Manager (magneticmaterials@alliedscholars.com)

Cancellation Policy).

If Allied academies cancel this event for any reason, you will receive a credit for 100% of the registration fee paid. You may use this credit for another Allied Academies Conferences (AAC) event which must occur within one year from the date of cancellation.

Postponement

If Allied academies postpone an event for any reason and you are unable or unwilling to attend on rescheduled dates, you will receive a credit for 100% of the registration fee paid. You may use this credit for another Allied Academies Conferences event which must occur within one year from the date of postponement.

Transfer of registration

All fully paid registrations are transferable to other persons from the same organization if registered person is unable to attend the event. Transfers must be made by the registered person in writing to Program Manager. Details must be included with the full name of replacement person, their title, contact phone number and email address. All other registration details will be assigned to the new person unless otherwise specified.

Registration can be transferred to one conference to another conference of Allied academies if the person is unable to attend one of the conferences.
However, Registration cannot be transferred if it is intimated within 14 days of the respective conference.
The transferred registrations will not be eligible for Refund.

Visa Information

Keeping in view of increased security measures, we would like to request all the participants to apply for Visa as soon as possible.
Allied Academies will not directly contact embassies and consulates on behalf of visa applicants. All delegates or invitees should apply for Business Visa only.
Important note for failed visa applications: Visa issues cannot come under the consideration of cancellation policy of Allied Academies, including the inability to obtain a visa.

Refund Policy

If the registrant is unable to attend and is not in a position to transfer his/her participation to another person or event, then the following refund arrangements apply:
Keeping in view of advance payments towards Venue, Printing, Shipping, Hotels and other overheads, we had to keep Refund Policy is as following slabs-

·         Before 60 days of the conference: Eligible for Full Refund less $100 Service Fee

·         Within 60-30 days of Conference: Eligible for 50% of payment Refund

·         Within 30 days of Conference: Not eligible for Refund

·         E-Poster Payments will not be refunded.

Accommodation Cancellation Policy

Accommodation Providers (Hotels) have their own cancellation policies, and they generally apply when cancellations are made less than 30 days prior to arrival. Please contact us as soon as possible, if you wish to cancel or amend your accommodation. Allied Academies will advise the cancellation policy of your accommodation provider, prior to cancelling or amending your booking, to ensure you are fully aware of any non-refundable deposits

 

Authorization Policy

Copyright © 2018-2019 Allied Academies, All Rights Reserved.